A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway

Journal of ETHNO-PHARMACOLOGY
Wilde Amed in Planaphene and in Control of the Cont

Yuguang Wu, Yulai Fang, Yanan Li, Ryan Au, Cheng Cheng, Weiyang Li, Feng Xu, Yuan Cui, Lei Zhu, Hong Shen

PII: S0378-8741(23)01193-5

DOI: https://doi.org/10.1016/j.jep.2023.117323

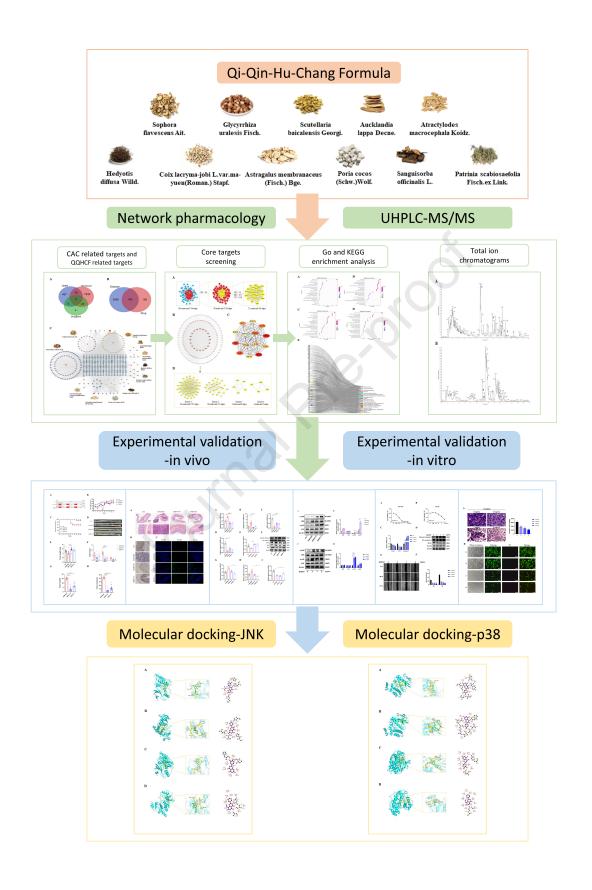
Reference: JEP 117323

To appear in: Journal of Ethnopharmacology

Received Date: 1 August 2023

Revised Date: 20 September 2023

Accepted Date: 13 October 2023


Please cite this article as: Wu, Y., Fang, Y., Li, Y., Au, R., Cheng, C., Li, W., Xu, F., Cui, Y., Zhu, L., Shen, H., A network pharmacology approach and experimental validation to investigate the anticancer mechanism of Qi-Qin-Hu-Chang formula against colitis-associated colorectal cancer through induction of apoptosis via JNK/p38 MAPK signaling pathway, *Journal of Ethnopharmacology* (2023), doi: https://doi.org/10.1016/j.jep.2023.117323.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2023 Published by Elsevier B.V.

# CRediT authorship contribution statement

Yuguang Wu: Conceptualization, Investigation, Methodology, Validation, Visualization, Writing – original draft. Yulai Fang: Investigation, Writing – review & editing. Yanan Li: Methodology. Ryan Au: Investigation, Writing – review & editing. Cheng Cheng: Investigation. Weiyang Li: Investigation. Feng Xu: Investigation. Yuan Cui: Investigation. Lei Zhu: Conceptualization, Project administration, Supervision, Writing – review & editing. Hong Shen: Conceptualization, Funding acquisition, Resources, Writing – review & editing.



# 1 Original Article

- 2 A network pharmacology approach and experimental valida-
- 3 tion to investigate the anticancer mechanism of Qi-Qin-Hu-
- 4 Chang formula against colitis-associated colorectal cancer
- 5 through induction of apoptosis via JNK/p38 MAPK signaling
- 6 pathway
- 7 Yuguang Wu <sup>a, b</sup>, Yulai Fang <sup>a</sup>, Yanan Li <sup>a, b</sup>, Ryan Au <sup>a, b, d</sup>, Cheng Cheng <sup>c</sup>, Weiyang Li
- 8 a, b, Feng Xu a, b, Yuan Cui a, b, Lei Zhu a, \*, Hong Shen a,\*
- 9 <sup>a</sup> Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029,
- 10 China.
- 11 b The First School of Clinical Medicine, Nanjing University of Chinese Medicine, Nan-
- 12 jing 210023, China
- <sup>c</sup> School of Health Preservation and Rehabilitation, Nanjing University of Chinese
- 14 Medicine
- d Academy of Chinese Culture and Health Sciences, Oakland, CA, 94612, USA
- \*Correspondence should be addressed to Hong Shen; Shenhong999@njucm.edu.cn and
- 17 Lei Zhu; <u>zhulei5100@njucm.edu.cn</u>

| 18 | Abstract                                                                                   |
|----|--------------------------------------------------------------------------------------------|
| 19 | Ethnopharmacological relevance: The Qi-Qin-Hu-Chang Formula (QQHCF) is a tradi-            |
| 20 | tional Chinese medicine prescription that is clinically used at the Affiliated Hospital of |
| 21 | Nanjing University of Chinese Medicine for the treatment of colitis-associated colorec-    |
| 22 | tal cancer (CAC).                                                                          |
| 23 | Aim of the study: To evaluate the potential therapeutic effects of QQHCF on a CAC          |
| 24 | mouse model and investigate its underlying mechanisms using network pharmacology           |
| 25 | and experimental validation.                                                               |
| 26 | Materials and methods: The active components and potential targets of QQHCF were           |
| 27 | obtained from Traditional Chinese Medicine Systems Pharmacology (TCMSP) and                |
| 28 | herb-ingredient-targets gene network were constructed by Cytoscape 3.9.2. Target           |
| 29 | genes of CAC were obtained from GeneCards, Online Mendelian Inheritance in Man,            |
| 30 | and DrugBank database. The drug disease target protein-protein interaction (PPI) net-      |
| 31 | work was constructed and the core targets were visualized and identified using Cyto-       |
| 32 | scape. The Metascape database was used for GO and KEGG enrichment analysis.                |
| 33 | UHPLC-MS/MS was used to further identify the active compounds in QQHCF. Subse-             |
| 34 | quently, the therapeutic effects and potential mechanism of QQHCF against CAC were         |
| 35 | investigated in AOM/DSS-induced CAC mouse in vivo, and HT-29 and HCT116 cells              |
| 36 | in vitro. Finally, interactions between JNK, p38, and active ingredients were assessed     |
| 37 | by molecular docking.                                                                      |
| 38 | Results: A total of 176 active compounds, 273 potential therapeutic targets, and 2460      |
| 39 | CAC-related target genes were obtained. The number of common targets between               |
| 40 | QQHCF and CAC were 165. KEGG pathway analysis indicated that the MAPK signal-              |
| 41 | ing pathway was closely associated with CAC, which may be the potential mechanism          |
| 42 | of QQHCF against CAC. Network pharmacology and UHPLC-MS/MS analyses                        |
| 43 | showed that the active compounds of QQHCF included quercetin, kaempferol, luteolin,        |
| 44 | wogonin, oxymatrine, lupanine, and baicalin. Animal experiments demonstrated that          |
| 45 | QQHCF reduced tumor load, number, and size in AOM/DSS-treated mice, and induced            |
| 46 | apoptosis in colon tissue. In vitro experiments further showed that QQHCF induced          |

| 47 | apoptosis and inhibited cell viability, migration, and invasion in HCT116 and HT-29             |
|----|-------------------------------------------------------------------------------------------------|
| 48 | cells. Notably, QQHCF activated the JNK/p38 MAPK signaling pathway both in vivo                 |
| 49 | and in vitro. Molecular docking analysis revealed an ability for the main components            |
| 50 | of QQHCF and JNK/p38 to bind.                                                                   |
| 51 | Conclusion: The present study demonstrated that QQHCF could ameliorate AOM/DSS-                 |
| 52 | induced CAC in mice by activating the JNK/p38 MAPK signaling pathway. These re-                 |
| 53 | sults have important implications for the development of effective treatment strategies         |
| 54 | for CAC.                                                                                        |
| 55 | Keywords: Qi-Qin-Hu-Chang Formula, Colitis associated colorectal cancer, Network                |
| 56 | pharmacology, apoptosis, JNK/p38 MAPK signaling pathway                                         |
| 57 |                                                                                                 |
| 58 | Introduction                                                                                    |
| 59 | Colorectal cancer (CRC) is a commonly occurring cancer and is the second highest                |
| 60 | cause of cancer-related deaths globally (Baidoun et al., 2021). Inflammatory bowel dis-         |
| 61 | ease (IBD) is a significant contributing factor to the development of colorectal cancer         |
| 62 | (Bocchetti et al., 2021). IBD creates a chronic inflammatory environment that is not            |
| 63 | natural and supports the development of cancer. In contrast to sporadic CRC, colitis-           |
| 64 | associated colorectal cancer (CAC) follows the 'inflammation-dysplasia-carcinoma'               |
| 65 | pathway, which leads to a sequence of genetic changes (Shah and Itzkowitz, 2022).               |
| 66 | There is currently no specific medical treatment for CAC. The available evidence sug-           |
| 67 | gests that chemoprevention therapy with 5-aminosalicylic acid, folic acid, statins, and         |
| 68 | anti-TNF drugs can contribute to reducing the risk of CAC (Li, W. et al., 2022). How-           |
| 69 | ever, there is still a lack of sufficient clinical trials to fully demonstrate their effective- |
| 70 | ness in the chemoprevention of colorectal cancer.                                               |
| 71 | Traditional Chinese Medicine (TCM) has the characteristics of affecting multiple                |
| 72 | targets, and having few side effects with a high curative effect (Wang et al., 2021).           |
| 73 | Studies have shown that various TCM treatments possess effective anti-tumor proper-             |
| 74 | ties that are involved in various aspects of cancer treatment, including promoting apop-        |

tosis, inhibiting angiogenesis, and inhibiting proliferation, migration, and invasion

(Zhang et al., 2017). The results of this study indicate that TCM could be a promising 76 therapeutic option for the prevention and treatment of cancer. In the TCM theoretical 77 system, the etiology of CAC is deficiency of the vital-qi and the disorder of immune 78 functions. Qi-Qin-Hu-Chang Formula (QQHCF, Patent number CN202211655092.8), 79 is derived from Qing-Chang-Hua-Shi granule, Buqi Yunpi Decoction and Xiangshen 80 Pill with modifications by Professor Shen. QQHCF has been utilized for the treatment 81 of CAC at the Affiliated Hospital of Nanjing University of Chinese Medicine (Shen et 82 al.). QQHCF is composed of 11 Chinese medicine (Table 1): Astragalus mongholicus 83 Bunge [Legume, Astragali Radix, AR], Atractylodes macrocephala Koidz. [Asteraceae, 84 Atractylodis Macrocephalae Rhizoma, AMR], Coix lacryma-jobi L. [Gramineae, Coi-85 cis Semen, CS], Poria cocos (Schw.)Wolf [Polyporaceae, Porix Cocos, PC], Sophora 86 flavescens Aiton [Legume, Sophorae Flavescentis Radix, SFR], Scutellaria baicalensis 87 Georgi [Labiatae, Scutellariae Radix, SR], Patrinia scabiosifolia Link [Valerianaceae, 88 Herba Patriniae, HP], Scleromitrion diffusum (Willd.) R.J.Wang [Rubiaceae Juss, 89 Spreading Hedyotis Herb, SH], Dolomiaea costus (Falc.) Kasana & A.K.Pandey 90 91 [Asteraceae, Aucklandiae Radix, ARs], Sanguisorba officinalis L. [Rosaceae Juss, Sanguisorbae Radix, SRs], Glycyrrhiza glabra L. [Legume, Glycyrrhizae Radix et Rhi-92 zoma, GC]. The plant name has been verified with MPNS (http://mpns.kew.org). 93 Chinese herbal compounds consist of four types of drugs: Sovereign, Minister, 94 Assistant, and Courier. The Sovereign medicine serves as the primary therapeutic agent, 95 while the Minister, Assistant, and Courier herbs provide supportive therapeutic effects. 96 97 In QQHCF, AR is the Sovereign herb. AR has the action of Invigorating Qi, removing edema, expelling pus and promoting granulation, and its pharmacological activities in-98 99 clude immune regulation, cardiovascular protection, and anticancer effects (Liu et al., 100 2021b; Su et al., 2021; Yang et al., 2020). AMR, HP, SH are the 'Minister drugs'. AMR strengthens Pi and induces diuresis. HP eliminates carbuncles and Clears Heat Toxins. 101 102 SH promotes diuresis, Clears Heat and inhibits cancer. AMR, HP, and SH can suppress 103 cell proliferation and induce apoptosis in cancer cells (Han et al., 2020; Huang et al., 2019; Yu et al., 2016). PC, CS, SFR, SR, and SRs are the Assistant herbs. PC and CS 104

| 105 | can enhance the functioning of the Pi and remove Dampness. Similarly, SFR and SR           |
|-----|--------------------------------------------------------------------------------------------|
| 106 | are effective in eliminating Heat and Dampness from the body. Moreover, SRs are re-        |
| 107 | nowned for their ability to cool the blood, promote hemostasis, and facilitate the healing |
| 108 | of sores. ARs and GC are the Courier herbs. ARs is used to regulate the flow of Qi and     |
| 109 | relieve pain, while GC is known to Invigorate the Pi, replenish Qi, and coordinate the     |
| 110 | effects of the above drugs. Both Assistant herbs and Courier herbs demonstrate anti-       |
| 111 | tumor activity (Jiang and Fan, 2020; Jo et al., 2020; Kong et al., 2021; Lee et al., 2021; |
| 112 | Pan et al., 2023; Song et al., 2022; Zhang et al., 2019). Although QQHCF is a commonly     |
| 113 | used treatment for CAC in clinical settings, the efficacy and underlying mechanisms of     |
| 114 | its action remains unknown and requires further investigation.                             |
| 115 | In this research, we explored the active compounds, possible targets, and molecu-          |
| 116 | lar mechanisms of QQHCF in treating CAC using network pharmacology, experimental           |
| 117 | validation, and molecular docking. We further validated our findings in both CRC cells     |
| 118 | and in a CAC mouse model.                                                                  |
| 119 |                                                                                            |
| 120 | Materials and Methods                                                                      |
| 121 |                                                                                            |
| 122 | Network pharmacology investigation of QQHCF against CAC                                    |
| 123 | QQHCF herbal compounds and compound targets                                                |
| 124 | The active ingredients and target proteins of QQHCF were acquired from Tradi-              |
| 125 | tional Chinese Medicine Systems Pharmacology Database (TCMSP, https://old.tcmsp-           |
| 126 | e.com/tcmsp.php), setting the parameters of oral bioavailability (OB)≥30% and drug-        |
| 127 | likeness (DL)≥0.18. The target proteins' gene names were then searched in the Uniport      |
| 128 | database (https://www.uniprot.org/). Cytoscape 3.9.2 was used to create the herb-active    |
| 129 | ingredient-intersecting target network (Duan et al., 2023).                                |
| 130 |                                                                                            |
| 131 | Retrieval of CAC-associated genes                                                          |
| 132 | Genes associated with CAC disease were retrieved from GeneCards                            |

| 133 | (https://www.genecards.org/), OMIM (https://www.omim.org/), and Drug Bank data-         |
|-----|-----------------------------------------------------------------------------------------|
| 134 | base (https://go.drugbank.com/). In these databases, genes associated with CAC were     |
| 135 | found by searching "colitis associated colorectal cancer", with "Homo sapiens" selected |
| 136 | as the species.                                                                         |
| 137 |                                                                                         |
| 138 | Construction of protein-protein interaction (PPI) network and selection of key targets  |
| 139 | Draw Venn Diagram (https://bioinformatics.psb.ugent.be/webtools/Venn/) was              |
| 140 | used to visualize the intersecting targets between QQHCF and CAC Intersecting tar-      |
| 141 | gets were then imported into STRING 11.5 with a required minimum network interac-       |
| 142 | tion score of 0.9. The PPI network was visualized and assessed with Cytoscape 3.9.2     |
| 143 | (Ji et al., 2021). Analysis of network topology parameters of targets, including degree |
| 144 | (DC), betweenness centrality (BC), and closeness centrality (CC), was performed using   |
| 145 | CytoNCA tools in Cytoscape software (Wang et al., 2023). The hub targets of QQHCF       |
| 146 | were selected according to the degree values that were greater than their respective    |
| 147 | medians (DC>39, BC>35.7, CC>0.56). PPI networks were filtered using the MCODE           |
| 148 | plugin in Cytoscape using a variety of cut-off values: degree=2, k-core=2, node score-  |
| 149 | 0.2, and max depth=100 (Wang et al., 2022).                                             |
| 150 |                                                                                         |
| 151 | GO and KEGG enrichment analysis of the intersecting targets                             |
| 152 | The Metascape database (https://metascape.org/) was used for GO (Gene Ontology)         |
| 153 | enrichment and KEGG (Kyoto Encyclopedia of Gene and Genomes) signaling pathway          |
| 154 | analysis of the main targets of QQHCF and CAC (Sun et al., 2023). The top 21 results    |
| 155 | were imported and visualized on a bioinformatics platform (http://www.bioinformat-      |
| 156 | ics.com.cn/) to analyze signaling pathways related to key molecular biological pro-     |
| 157 | cesses and key targets (Li, X. et al., 2022).                                           |
| 158 |                                                                                         |
| 159 | Molecular docking verification                                                          |
| 160 | Four core compounds from the QQHCF were selected through the TCMSP of the               |
| 161 | top four compounds with degree values in the PPI network for molecular docking. Mol2    |
|     |                                                                                         |

| 162 | molecular structure formats of QQHCF active compounds were obtained from TCMSP,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 163 | imported into AutoDockTools 1.5.7 for processing, and saved in pdbqt format. The 3D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 164 | structure of JNK and p38 were downloaded from the PDB protein database                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 165 | (https://www.rcsb.org). In Pymol, the water and organic matter molecules were re-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 166 | placed by hydrogen in the visualized target protein,, imported into AutoDockTools 1.5.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 167 | for designation as a receptor, and saved as a pdbqt file (Seeliger and de Groot, 2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 168 | AutoDockTools 1.5.7 was used for molecular docking, and the results were visualized                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 169 | by Pymol and LigPlus (Ye et al., 2021).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 170 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 171 | Preparation and quality control of QQHCF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 172 | The herbs in QQHCF were obtained from Jiangsu Province Hospital of TCM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 173 | (Nanjing, China). The herbs were mixed (157 g total), 10-times (w/v) of distilled water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 174 | was added, and the entire mixture was boiled for 40 min at 100 °C(Hu et al., 2021). The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 175 | first decoction was strained and the herbs were decocted again using the same steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 176 | The decoctions were combined and centrifuged at 4 °C for 10 min. The supernatant was                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 177 | collected and concentrated to 66 mL for QQHCF-H group and 132 mL for QQHCF-L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 178 | group using a rotary evaporator. The decoction was filtered through a 0.22 $\mu m$ filter for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 179 | use in cellular experiments (Hu et al., 2022).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 180 | The UHPLC-MS/MS analysis of QQHCF was performed on a SHIMADZU-LC30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 181 | UHPLC system equipped with an ACQUITY UPLC® HSS T3 column (2.1×100 mm,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 182 | $1.8\ \mu m,$ Waters, Milford, MA, USA) and a Thermo Scientific mass spectrometer. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 183 | sample injection volume was 4 $\mu L,$ and the column was heated to 40 $^{\circ} \! C$ under a flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 184 | rate of 0.3 mL/min. The chromatography mobile phases were composed of A: 0.1%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 185 | formic acid in water and B: 100% acetonitrile (ACN). The gradient elution procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 186 | is as follows: 0-2 min, 0% B; 2-6 min, 0-48% B; 6-10 min, 48-100% B; 10-12 min 100% B; $\frac{10-12}{100}$ min, $\frac{100}{100}$ min, |
| 187 | B; 12-12.1 min 100-0% B; 12.1-15 min, 0% B. Molecules separated by UPLC were                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 188 | analyzed by QE Plus mass spectrometry (Thermo Scientific). Both positive and nega-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 189 | tive-modes were applied during electrospray ionization (ESI). The ESI source condi-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 190 | tions were as follows: Spray voltage: 3.8 kV (+) and 3.2 kV (-); Sheath Gas: 30±; Aux                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| 191 | Gas: 5(±); Probe Heater Temp: 350(±); S-lens RF level: 50. Raw data was analyzed    |
|-----|-------------------------------------------------------------------------------------|
| 192 | using MSDIAL software for peak detection, retention time correction, and peak area  |
| 193 | extraction. Identification of compound structures were provided by Shanghai BIOPRO- |
| 194 | FILE Biotechnology Co., Ltd.                                                        |

195

196

197

# **Experimental verification**

Reagent and Instruments

Azoxymethane (AOM, A5486) was obtained from Sigma-Aldrich (St Louis, MO, 198 USA). Dextran sulfate sodium (DSS, MW: 36000-5000 Da) was purchased from MP 199 Biomedicals (California, USA). Fetal Bovine Serum (FBS, C04001), DMEM (C3110) 200 and RPMI-1640 (C3010) were obtained from VivaCell Biosciences (Shanghai, China). 201 The following primary antibodies were used: Bcl-XL (2764), Bcl-2 (3498), Bax (2772), 202 p38 (8690), p-p38 (9211), p-JNK (4668) provided by CST (Danvers, MA, USA). 203 Caspase-3/Cleaved Caspase-3 (WL02117) were obtained from Wanlei (Shenyang, 204 China). B-actin (66009-1-Ig), JNK (24164-1-AP) and the secondary antibodies HRP-205 206 conjugated Affinipure Goat Anti-Mouse IgG (H+L) (20000312), and HRP-conjugated Affinipure Goat Anti-Rabbit IgG (H+L) (20000455) were purchased from Proteintech 207 (Rosemont, USA). Hieff@qPCR SYBR green master mix (11201ES08) and Hifair@ III 208 1st Stand cDNA Synthesis Super Mix (11141ES60) were bought from YEASEN 209 (Shanghai, China). Cell Counting Kit-8 (CCK8) was purchased from Vazyme Biotech 210 (Nanjing, China). Transwell chambers (24-well plate, 8.0µm) were purchased from 211 NEST (Wuxi, China). Standard OrganoGel with Phenol red was provided by Absin<sup>®</sup> 212 (Shanghai, China). BCA Protein Assay Kit (P0010), RIPA Lysis Buffer (Poo13B), Pro-213 214 tease inhibitor cocktail (P1005) and Calcein/PI Cell Viability/Cytotoxicity assay kit (C2015S) were provided by Beyotime Biotechnology (Shanghai, China). Enhanced 215 chemiluminescent (ECL) plus reagent kit was bought from Biosharp (Beijing, China). 216 217 TUNEL (G1501) and Ki67 staining kits (GB111141) were provided by Servicebio Bi-218 otech (Wuhan, China).

| 220 | Animal experiments                                                                        |
|-----|-------------------------------------------------------------------------------------------|
| 221 | Animals                                                                                   |
| 222 | Male C57BL/6 mice (6-8 weeks old) of SPF grade were purchased from Beijing                |
| 223 | SiPeiFu Biotechnology Co., Ltd (Beijing, China) and housed under SPF conditions with      |
| 224 | a 12-h dark/light cycle, food and water ad libitum during the experiment. All anima       |
| 225 | experiments were approved by Nanjing University of Chinese Medicine's Committee           |
| 226 | for Ethics of Animal Experimentation and conducted strictly in accordance with their      |
| 227 | Guidelines for Animal Experimentation.                                                    |
| 228 |                                                                                           |
| 229 | Establishment of CAC model and QQHCF treatment                                            |
| 230 | After one week of acclimation, the mice were randomly divided into four groups            |
| 231 | Ctrl group, AOM/DSS group, QQHCF-H group (23.8 g/kg/day), QQHCF-L group                   |
| 232 | (11.9 g/kg/day). To induce CAC, mice were given a single intraperitoneal injection (i.p.) |
| 233 | of 10 mg/kg azoxymethane (AOM), followed by seven days of regular diet with free          |
| 234 | access to water. Seven days later, mice were given 2% DSS for one week and then           |
| 235 | distilled water for 14 days as a recovery period. This cycle was repeated three more      |
| 236 | times for 11 weeks. QQHCF (11.9, 23.8 g/kg/day) was administered by oral gavage           |
| 237 | once daily. In addition, mice in the Ctrl group and AOM/DSS group were given PBS          |
| 238 | by oral gavage at an equal volume. A schedule of the experiment is shown in Fig. 6A.      |
| 239 |                                                                                           |
| 240 | H&E staining                                                                              |
| 241 | Colon tissue was fixed in 4% paraformaldehyde, embedded with paraffin, and cur            |
| 242 | into 5-µm thick sections. The sections were placed on glass slides, stained with hema-    |
| 243 | toxylin-eosin using standard procedures, and observed under an optical microscope.        |
| 244 |                                                                                           |
| 245 | Immunohistochemistry (IHC) and TUNEL assay                                                |
| 246 | For IHC staining, tissue sections were deparaffinized and rehydrated. Antigen re-         |
| 247 | trieval was performed, followed by blocking with BSA (5%, 1.5 h) and incubation with      |
| 248 | primary antibodies Ki67 (1:1000, GB111141, Servicebio) at 4°C overnight. Next, slides     |

| 249 | were incubated with secondary antibodies for 1 h and counterstained with hematoxylin                  |
|-----|-------------------------------------------------------------------------------------------------------|
| 250 | for 10 min to mark the nuclei. Samples were observed by a light microscope. To detect                 |
| 251 | apoptosis, a TUNEL assay was performed using the TUNEL assay kit (G1501) accord-                      |
| 252 | ing to the manufacturer's protocol.                                                                   |
| 253 |                                                                                                       |
| 254 | Cell culture                                                                                          |
| 255 | The human CRC cell lines HCT116 and HT-29 were provided by Nanjing Univer-                            |
| 256 | sity of Chinese Medicine. HCT116 were cultured in RPMI 1640 medium supplemented                       |
| 257 | with 10% FBS and 1% Pen-Strep solution and HT-29 were cultured in DMEM medium                         |
| 258 | supplemented with 10% FBS and 1% Pen-Strep solution. The two cell lines were cul-                     |
| 259 | tured in an incubator at 37 °C with 5% CO <sub>2</sub> .                                              |
| 260 |                                                                                                       |
| 261 | Cell viability assay                                                                                  |
| 262 | A total of 5×10 <sup>3</sup> HCT116 and 1×10 <sup>4</sup> HT-29 were seeded into 96-well plate at the |
| 263 | logarithmic phase and then treated with QQHCF at concentrations of 0, 1.25, 2.5, 5, 7,                |
| 264 | 9 mg/mL at 37 °C for 24 h. After 24 h of treatment, add 10 $\mu L$ CCK8 to each well and              |
| 265 | incubated at 37°C for 1 h. The absorbance at 450 nm was then recorded using a micro-                  |
| 266 | plate reader.                                                                                         |
| 267 |                                                                                                       |
| 268 | Calcein/PI Cell Viability/Cytotoxicity assay                                                          |
| 269 | A total of 1×10 <sup>4</sup> HT-29 were seeded into a 96-well plate and treated with QQHCF at         |
| 270 | concentrations of 0, 5, 7, and 9 mg/mL. The treatment was carried out at 37 °C for 24                 |
| 271 | hours. After treatment, cells were detected using Calcein/PI assay kit in accordance with             |
| 272 | the manufacturers protocols.                                                                          |
| 273 |                                                                                                       |
| 274 | Wound healing assay                                                                                   |
| 275 | About 5×10 <sup>5</sup> HT-29 cells were seeded in the 6-well plate. When cells reached 80-90%        |
| 276 | confluency, cells were scraped perpendicular to the bottom of the well with a 200 $\mu L$             |
| 277 | pipette tip and washed with PBS to remove floating cells. Different concentrations of                 |

QQHCF (0, 5, 7, and 9 mg/mL) were added to serum-free medium in each well and incubated at 37°C for 72 h. Images were captured at 0 h, 48 h, and 72 h by using a light microscope with a magnification level of 100x. ImageJ was used for quantification and the migration rate was calculated using the following formula: Wound healing area (%)=(0 h scratch area-24 h scratch area)/0 h scratch area ×100.

## Transwell migration and invasion assay

Matrigel matrix was melted in a 4°C fridge overnight, and diluted in DMEM medium at a ratio of 1:6. A total of 60  $\mu$ L matrix was added to the upper Transwell chamber insert and incubated at 37°C for 4 h. HT-29 was resuspended in serum-free medium and added to the upper chamber. The lower chamber was loaded with DMEM containing 10% FBS and different concentrations of QQHCF (0, 5, 7, and 9 mg/mL). The cells were treated for 24 h. The upper chamber was removed and washed by PBS once. 600  $\mu$ L 4% paraformaldehyde was added to the lower chamber for cell fixation and stained with 0.1% crystal violet solution for 15 min. The invading cells were observed by a light microscope in five random fields at a magnification of 200x and manually quantified using ImageJ software. The Transwell migration experiment followed the same steps as the Transwell invasion assay, but Matrigel was used to precoat the upper chambers.

## Western blotting

Total protein was extracted from mouse colorectal tissue using RIPA buffer containing 1% PMSF. Protein quantification was performed using the BCA protein assay kit according to the manufacturer's protocol. Proteins were then separated by 10-12% SDS-PAGE, transferred to polyvinylidene difluoride membranes, blocked with 5% skimmed milk in TBS for 1 h at room temperature, and incubated with the appropriate primary antibodies (1:1000-1:2000 dilution) at 4°C overnight. The membranes were then incubated with secondary antibodies for 1 h and protein bands were detected and visualized using an ECL chromogenic substrate with a Chemiluminescence imaging

| 307 | system (Bio-Rad). The expression of protein was normalized to $\beta$ -actin using ImageJ                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 308 | software.                                                                                                                                                     |
| 309 |                                                                                                                                                               |
| 310 | Real-time qRT-PCR                                                                                                                                             |
| 311 | Total RNA was extracted from colon tissue by using Trizol reagent and reversely                                                                               |
| 312 | transcribed into cDNA using Hifair@ III 1st Strand cDNA Synthesis kits according to                                                                           |
| 313 | manufacturer's instructions. Real-time qPCR was carried out using Hieff@ qPCR                                                                                 |
| 314 | SYBR green master mix with the LightCycler® 96 System (Roche, Basel, Switzerland).                                                                            |
| 315 | $\beta$ -actin was used as the housekeeping gene for all reactions and gene expression was cal-                                                               |
| 316 | culated using the $^{\triangle\triangle}$ Ct method = 2 ( $^{\triangle}$ Ct experimental - $^{\triangle}$ Ct control) = $2^{-\triangle\triangle Ct}$ . Primer |
| 317 | sequences are listed in Table 6.                                                                                                                              |
| 318 |                                                                                                                                                               |
| 319 | Statistical analysis                                                                                                                                          |
| 320 | All statistical analyses were performed on GraphPad Prism 9.0.0. Comparisons                                                                                  |
| 321 | between multiple groups were detected by one-way analysis of variance (ANOVA) tests.                                                                          |
| 322 | and comparisons between two groups were detected by t-tests. Data is expressed as the                                                                         |
| 323 | mean $\pm$ S.E.M. Values of $P < 0.05$ were considered statistically significant.                                                                             |
| 324 |                                                                                                                                                               |
| 325 | Results                                                                                                                                                       |
| 326 | Network pharmacology-based strategy for predicting potential targets of QQHCF                                                                                 |
| 327 | for treating CAC                                                                                                                                              |
| 328 | Collection of QQHCF targets and CAC targets                                                                                                                   |
| 329 | Active compounds in QQHCF were compiled from the TCMSP and screened ac-                                                                                       |
| 330 | cording to OB $\geq$ 30% and DL $\geq$ 0.18 conditions. A total of 176 active ingredients were                                                                |
| 331 | obtained (Supplementary Material 1). A total of 273 therapeutic target proteins associ-                                                                       |
| 332 | ated with 176 QQHCF-derived compounds were identified and their gene names were                                                                               |
| 333 | adjusted using the UniPort database (Supplementary Material 2). Cytoscape 3.9.2 was                                                                           |
| 334 | then used to construct the herb-component-targets gene network. As shown in (Fig. 2C),                                                                        |
| 335 | the surrounding circles represent different herbs and active compounds of OOHCF, and                                                                          |

| 336 | the hexagons above and below represent the shared ingredients between the herbs. The    |
|-----|-----------------------------------------------------------------------------------------|
| 337 | blue quadrangles in the middle indicate the targets. Node degree is a measure of the    |
| 338 | number of edges attached to a node. The pharmaceutical ingredients with the highest     |
| 339 | degree values were quercetin, kaempferol, luteolin, and wogonin.                        |
| 340 | A total of 2460 CAC-related targets were collected from the GeneCards, OMIM,            |
| 341 | and DrugBank databases (Fig. 2A and Supplementary Material 3). The 165 overlapping      |
| 342 | genes between QQHCF targets and CAC targets were identified through a Venn dia-         |
| 343 | gram (Fig. 2B and Supplementary Material 3).                                            |
| 344 |                                                                                         |
| 345 | PPI network analysis and core targets screening                                         |
| 346 | To identify targets that have direct or indirect interactions, the 165 overlapping      |
| 347 | genes were imported into the STRING database and a PPI network was constructed.         |
| 348 | The PPI network consisted of 164 nodes and 3746 edges (Fig. 3A). Core targets were      |
| 349 | identified based on their DC, BC, and CC values, and core and non-core target networks  |
| 350 | were constructed (Fig. 3B). The top 14 targets, ranked by degree, were shown (Fig. 3C). |
| 351 | Table 2 shows the detailed information of the top 14 targets. Darker colors represent   |
| 352 | higher degree values. In order to delve deeper into the sub-network identified by       |
| 353 | MCODE, the targets were categorized into four distinct groups (Fig. 3D).                |
| 354 |                                                                                         |
| 355 | GO and KEGG enrichment analysis                                                         |
| 356 | To further investigate the function of QQHCF in CAC, we executed GO and                 |
| 357 | KEGG enrichment analysis of the 165 overlapping targets. The top 21 enriched GO         |
| 358 | terms of molecular functions, cellular components, and biological processes are shown   |
| 359 | in (Fig. 4B-D and Supplementary Material 4). Molecular functions include kinase bind-   |
| 360 | ing, transcription factor binding, protein homodimerization activity, etc. The cellular |
| 361 | components include transcription regulatory complexes, membrane rafts, and mem-         |
| 362 | brane microdomains. Finally, the biological processes include responses to hormones,    |
| 363 | cellular responses to nitrogen compounds, and responses to peptides, among others.      |

The top 21 most abundant KEGG pathways are shown and seven of these pathways

were found to be associated with the development of CAC. These include pathways in cancer, PI3K-Akt and MAPK signaling pathway, MicroRNAs in cancer, and others (Fig. 4A and E and Table 3). Additionally, we observed that 32 targets were enriched in the MAPK signaling pathway. The MAPK signaling system is crucial in cancer therapy as it enables extracellular signals to regulate various cellular functions including proliferation, differentiation, migration, and apoptosis (Anjum et al., 2022).

# Identification and prediction of active compounds in QQHCF

UHPLC-MS/MS was used to identify the active ingredients in QQHCF. The representative LC-MS total ion current chromatograms (TIC) obtained in positive (ESI+) and negative ionization (ESI-) mode are shown (Fig. 5A-B). Table 4 identifies and labels the representative compounds of each herb in QQHCF, while Supplementary Material 5 provides the chemical structure and extracted ion chromatography (EIC) results. According to UHPLC-MS/MS analyses, Ammothamnine, Lupanine, and Baicalin were the three most abundant ingredients.

# QQHCF alleviates AOM/DSS induced CAC in mice

To investigate the role of QQHCF in CAC, we used azoxymethane/dextran sodium sulfate (AOM/DSS) to induce CAC in mice (Fig. 6A). During the first and two DSS cycles, mice subjected to AOM/DSS treatment exhibited a greater loss of body weight compared to the Ctrl group, while QQHCF attenuated this body weight loss (Fig. 6B). Compared with the AOM/DSS group, the QQHCF group had significantly reduced survival rate and increased the colon length (Fig. 6C and E). Tumor load, number, and size were increased in AOM/DSS treated mice, whereas the QQHCF group showed fewer tumors and smaller tumor size per colon (Fig. 6D and F- H). Histological analysis of colon tissue stained with H&E showed destruction of intestinal structures, multiple adenomas and adenocarcinomas in the AOM/DSS group, which was not seen in QQHCF groups (Fig. 7A). Taken together, these results confirmed that QQHCF exerted protective effects in a CAC mouse model.

# QQHCF regulates cell proliferation and apoptosis in colon tumor tissue

Cancer is characterized by aberrant regulation of both proliferation and replicative immortality, which leads to unchecked cell growth (Loftus et al., 2022). Regulating the balance between cell proliferation and apoptosis is of utmost importance in the context of cancer development, progression, and treatment. TUNEL staining was utilized to determine cell apoptosis in colon tissue, while Ki67 immunochemistry staining was used to determine cell proliferation. The results indicated that the number of TUNEL-positive cells in the AOM/DSS group was significantly lower than that in the control group. However, this was increased in the QQHCF treatment group (Fig. 7C). AOM/DSS treatment increased the number of Ki67-positive cells, while the proliferation level was significantly decreased in QQHCF-treated mice (Fig. 7B).

Next, we evaluated the expression of core regulators of the intrinsic pathway of apoptosis, including Bcl-XL, Bcl-2, Bax and caspase-3 through qPCR and western blotting (Peña-Blanco and García-Sáez, 2018). As shown in (Fig. 8A-B), the mRNA expression levels of Bcl-XL and Bcl-2 were significantly increased in AOM/DSS group. However, after QQHCF treatment, these levels were dramatically reduced. Moreover, compared with the AOM/DSS group, the mRNA expression levels of Bax and p-caspase-3 were significantly increased in the QQHCF group (Fig. 8C-D). Similar results were confirmed by western blotting (Fig. 8E-I). Thus, the results indicated that QQHCF has the potential to inhibit tumor growth by promoting tumor cell apoptosis and suppressing cell proliferation.

## QQHCF treatment activates the JNK/p38 MAPK pathway in vivo

Environmental and genotoxic stresses have been shown to activate p38 and JNK MAPK pathways. These two proteins are known to play crucial roles in cancer development and therapy, as they regulate cell proliferation, apoptosis, and differentiation (Wagner and Nebreda, 2009). Activation of the JNK/p38 MAPK signaling pathway has been shown to inhibit cell proliferation and promote apoptosis. (Peluso et al., 2019).

KEGG analysis enrichment results showed that the MAPK pathway is one of the most significantly enriched pathways, therefore, the effect of QQHCF on the MAPK signaling pathway was examined. Western blotting results of colon tumor tissue indicated that QQHCF treatment increased the phosphorylation of JNK and p38 proteins but did not affect JNK and p38 expression in CAC mice (Fig.9 A-B). Taken together, these results suggest that QQHCF may affect apoptosis through the JNK/p38 MAPK signaling pathway.

# **QQHCF** inhibits cell viability of CRC cells

To investigate the effect of QQHCF on the proliferation of CRC cell lines, we conducted CCK-8 assays. Briefly, HCT116 and HT-29 cells were incubated with various concentrations of QQHCF (0, 1.25, 2.5, 5, 7, 9 mg/mL) for 24 h and CCK-8 assays were performed. As shown in (Fig. 10A-B), QQHCF inhibited the proliferation of HCT116 and HT-29 cells in a dose-dependent manner. The IC<sub>50</sub> values for QQHCF on HCT116 and HT29 cells were 2.37 mg/mL and 6.11 mg/mL, respectively, after 24 h of exposure. For subsequent analyses, we chose 1.25, 2.5, and 5 mg/mL QQHCF concentrations for HCT116 cells and 5, 7, and 9 mg/mL QQHCF concentrations for HT-29 cells. The results suggest that QQHCF has a noteworthy impact on inhibiting the growth of CRC cell lines (HCT116 and HT-29) *in vitro*. Furthermore, QQHCF exhibited no signs of toxicity in NCM460 cells (Fig. S1A).

## **QQHCF** induces apoptosis in CRC cells

To investigate the effects of QQHCF on cell proliferation, HT-29 and HCT116 cells were exposed to varying concentrations of QQHCF (1, 2, and 5 mg/mL for HT-29 cells and 5, 7, and 9 mg/mL for HCT116 cells) for a duration of 24 h. Following exposure, RNA and protein was extracted from the cells and analyzed using qPCR and western blotting. The results suggested that the expression levels of Bcl-XL and Bcl-2 were decreased after treatment with QQHCF, whereas the expression level of p-caspase-3

was increased after treatment (Fig. 10C-D and Fig. S1B). The Calcein/PI assay demonstrated similar results (Fig. 11B). These findings strongly suggest that QQHCF is capable of inducing apoptosis in HCT116 and HT-29 cells.

of HT29 cells.

# **QQHCF** represses the migration and invasion of CRC cells

Cancer is characterized by altered tissue mechanics and metabolism, which not only affect invasion but also migration (Zanotelli et al., 2021). The objective of this study was to investigate the impact of QQHCF on the migration and invasion capabilities of CRC cell lines. The migration capacities of CRC cells were assessed using both scratch wound assay and Transwell chamber assays. Results showed that QQHCF significantly suppressed cell migration in a dose-dependent manner. After being treated with QQHCF for 24 h, the number of HT29 cells migrating to the lower chamber was inhibited by 25%, 53%, and 68% at concentrations of 5, 7, and 9 mg/mL, respectively. Moreover, wound-healing assays showed the same results (Fig. 10E-F and Fig. S1C).

The invasion capacity of CRC cells was measured using a Transwell chamber assay. The results in (Fig. 11A) demonstrate that QQHCF inhibits the invasion of CRC cells in a dose-dependent manner. Treatment of HT29 cells with 5, 7, and 9 mg/mL of QQHCF for 24 h resulted in a decrease in the number of cells invading the lower chamber by 39%, 53%, and 65%, respectively. The results obtained at the concentration of 1.25 and 2.5 mg/mL also exhibited similar outcomes (Fig. S2). Taken together, our

## QQHCF activates the JNK/p38 MAPK pathway in vitro

As previously described, activation of the JNK/p38 MAPK pathway has been shown to accelerate cell apoptosis and inhibit cell proliferation (Ren et al., 2021). Therefore, the status of JNK/p38 MAPK pathway proteins in QQHCF treated HT29 cells was assessed by western blotting. Our findings indicate that the expression of p-JNK and p-p38 were significantly increased in HT-29 after being treated with QQHCF

study reveals that QQHCF exhibits suppressive effects on the migration and invasion

for 24 h (Fig. 9C-D). This was consistent with the results of the *in vivo* study.

# Predicting active compounds of QQHCF in the JNK/p38 MAPK signaling pathway

According to the PPI network results, four compounds with the highest degree of quercetin, kaempferol, luteolin, and wogonin were identified and simulated molecular docking with JNK and p38 proteins. In general, the stability of the binding conformation increases as the binding energy between the ligand and receptor decreases (Liu et al., 2021a). After analyzing the molecular docking results of JNK and p38, it was found that wogonin had the highest docking score and the lowest C-DOCKER energy (-6.72 kcal/mol). These four compounds bind well to JNK and p38 proteins, suggesting that they may be crucial in the treatment of CAC. The molecular docking results are shown in Fig. 12, Fig S3 and Table 5.

#### Discussion

CAC is a serious complication that arises from chronic inflammation of the colon. It is a major cause of mortality and a leading cause for colectomy. Studies conducted on Asian-Pacific populations have shown a higher prevalence of CAC as compared to western industrialized populations (Shah and Itzkowitz, 2022). This has led to extensive research in identifying the contributing factors, prevention, and treatment of CAC over the past few decades. Apart from endoscopy surveillance and chemoprevention, the standard treatment for CAC involves proctocolectomy with ileoanal anastomosis. Recent studies suggest that the preventive effect of 5-ASA and thiopurine on CAC may be diminished in cases of severe inflammation, and in some cases, these medications may even contribute to carcinogenesis instead of preventing it (Hsiao et al., 2022).

Research has shown that TCM offers distinct advantages in the treatment of cancer. TCM has the potential to enhance short-term treatment outcomes, mitigate the toxic side effects of conventional cancer treatment, improve quality of life, and ultimately prolong life expectancy (Yuan et al., 2019). As a result, TCM has become an integral

| 509 | component of cancer prevention and anti-tumor therapy. According to TCM theory, the         |
|-----|---------------------------------------------------------------------------------------------|
| 510 | Pi is an essential organ of the human body, which is a primary source of 'Qi' and blood.    |
| 511 | Its functions not only include providing nutrients for the activities of the human body     |
| 512 | and maintaining normal metabolism, but also playing a crucial role in immune function.      |
| 513 | In TCM, the pathogenesis of CAC can be attributed to the deficiencies of the Pi and         |
| 514 | lack of Qi (Shang et al., 2023). This deficiency causes Dampness and Heat to accumu-        |
| 515 | late in the colon, which damages it and leads to the development of colon ulcers. Over      |
| 516 | time, this can progress to cancer. QQHCF can strengthen the Pi and benefit Qi in the        |
| 517 | body.                                                                                       |
| 518 | Uncontrolled cell proliferation, resistance to apoptosis, invasion, and metastasis          |
| 519 | are the main features of cancer. Proliferation and apoptosis are particularly important,    |
| 520 | and research on anticancer therapy mainly focuses on the methods of inducing cancer         |
| 521 | cell apoptosis and inhibiting cancer cell proliferation (Vaghari-Tabari et al., 2021). Net- |
| 522 | work pharmacology is a widely-applied approach to discovering the complex pharma-           |
| 523 | cological mechanisms of TCM in treating complex diseases. In this study, we investi-        |
| 524 | gated the anticancer mechanism of QQHCF using a network pharmacology approach               |
| 525 | and verified the results through in vitro and in vivo experiments. In this study, we iden-  |
| 526 | tified 165 potential anti-CAC targets of QQHCF using network pharmacology. The tar-         |
| 527 | gets were screened based on three topological parameters: BC, CC, and DC, and 14            |
| 528 | main targets were ultimately identified. These targets include TP53, TNFF, IL6,             |
| 529 | MAPK3, CASP3, STST3, MYC, EGFR, HIF1A, AKTA, ESR1, VEGFA, IL1 $\beta$ , and                 |
| 530 | PTGS2, which are primarily associated with cancer, inflammation, and apoptosis. In          |
| 531 | addition, genes involved in apoptosis include BAX, CASP3, BCL2, CASP8, CASP9,               |
| 532 | CASP7, and BCL2L1. The CAC mouse model was established using AOM/DSS and                    |
| 533 | treatment was QQHCF.                                                                        |
| 534 | In vivo experiments demonstrated that QQHCF significantly reduces tumor bur-                |
| 535 | den, number, and size in CAC mice. To investigate the mechanism of QQHCF attenu-            |
| 536 | ating CAC in mice, we detected the effects of QQHCF on the proliferation and apopto-        |
| 537 | sis of colon cancer cells. The study revealed that QQHCF treatment led to a reduction       |

in the number of cells positive for Ki67 and an increase in the number of cells positive for TUNEL. Additionally, the expression levels of apoptosis related genes Bcl-XL, Bcl-2, Bax and Caspase-3 were examined.

The results demonstrated that QQHCF treatment significantly reduced the expression levels of Bcl-XL and Bcl-2 while increasing the expression levels of Bax and p-caspase-3 in colon tissue. Similar results were obtained from *in vitro* experiments. QQHCF was found to inhibit cell proliferation and downregulate the expression levels of Bcl-XL and Bcl-2 in HCT116 and HT-29 cells. Tumor metastasis is closely linked with cell migration and invasion (Duff and Long, 2017), and QQHCF was observed to inhibit these processes in HT-29 cells. These findings suggest that QQHCF may have protective effects on CAC mice by influencing cell apoptosis and proliferation.

To investigate the mechanism of QQHCF in CAC, we conducted KEGG and GO enrichment analysis. The results of KEGG pathway analysis revealed that seven pathways were linked to CAC development, including the pathway in cancer, PI3K-Akt and MAPK signaling pathway, MicroRNAs in cancer, and others. Notably, we observed that 32 targets were enriched in the MAPK signaling pathway. The MAPK pathway plays a key role in the regulation of cellular processes such as cell proliferation, differentiation, and stress response, and is critical in cancer development. This pathway encompasses seven MAPK cascades, namely ERK1/2, JNK1/2/3, p38, ERK5, ERK3/4, ERK7/8, and NLK (Park and Baek, 2022). JNK activation has been shown to induce the mitochondrial apoptotic pathway and act as a tumor suppressor. This is due to Bel-2-associated cell death and phosphorylation of JNK by Bim agonists. Bcl-2 and Bcl-XL induces the release of cytochrome c and activates caspases 3 and 9, leading to apoptosis (Hammouda et al., 2020). Activation of the p38 signaling cascade leads to cell cycle arrest through downregulation of G1/S or G2/M cell cycle activators (Bulavin and Fornace, 2004). Our study revealed that QQHCF increased the phosphorylation of JNK and p38 proteins in AOM/DSS induced CAC mice and CRC cells, indicating that it can activate the JNK/p38 MAPK signaling pathway both in vivo and in vitro.

| In this research, we utilized network pharmacology and UHPLC-MS/MS to iden-               |
|-------------------------------------------------------------------------------------------|
| tify potential effective compounds in QQHCF for treating CAC. Based on network            |
| pharmacology and UHPLC-MS/MS analysis, QQHCF contains numerous pharmaceu-                 |
| tical components such as quercetin, kaempferol, luteolin, wogonin, oxymatrine, lupa-      |
| nine, and baicalin. Quercetin is a flavonol, a polyphenolic flavonoid that has various    |
| pharmacological effects, such as anti-cancer, anti-inflammatory, and anti-bacterial ef-   |
| fects. Studies have shown that quercetin can induce colon cancer cell apoptosis. In ad-   |
| dition, kaempferol, luteolin, wogonin, oxymatrine, lupanine, and baicalin have also       |
| been shown to have anti-cancer properties (Choi et al., 2018; Kong et al., 2021; Liang    |
| et al., 2023; Nibret et al., 2021; Yoo et al., 2022; You et al., 2022). The molecules un- |
| derwent a docking process, which revealed their ability to bind with JNK and p38. As      |
| a result, QQHCF improves CAC in mice by utilizing multiple compounds that work            |
| together.                                                                                 |

Our research findings indicate that QQHCF had a protective effect against CAC in a mouse model and can trigger apoptosis in CRC cells. This effect may be attributed to the activation of the JNK/p38 MAPK pathway. However, there are still some issues to be resolved. First, more research needs to be done on its main bioactive constituents. Second, the anti-CAC mechanism of QQHCF involves multiple pharmacological effects. Several important targets and pathways have been identified in our experiments, but further pharmacological studies are needed to elucidate these complex mechanisms. Nevertheless, these findings provide a further pharmacological basis for the treatment of CAC with QQHCF and the development of QQHCF as a novel treatment for CAC.

#### **Conclusions**

In conclusion, our study results show that QQHCF can ameliorate AOM/DSS induced CAC mice and promote apoptosis in HT29 and HCT116 cells through activating the JNK/p38 MAPK signaling pathway. Additionally, *in vitro* experiments show that QQHCF inhibits the migration and invasion of HT29 cells. Our study provides a novel approach and mechanism for the treatment of CAC.

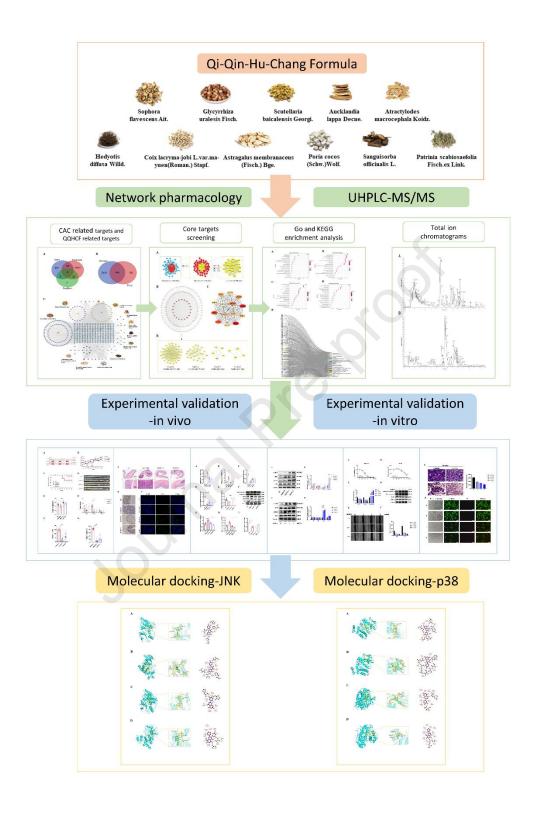
| 595                      |                                                                                                                                                                                                                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 596                      | CRediT authorship contribution statement                                                                                                                                                                                                                                                                                     |
| 597                      | Yuguang Wu: Conceptualization, Investigation, Methodology, Validation, Visu-                                                                                                                                                                                                                                                 |
| 598                      | alization, Writing – original draft. Yulai Fang: Investigation, Writing – review & edit-                                                                                                                                                                                                                                     |
| 599                      | ing. Yanan Li: Methodology. Ryan Au: Investigation, Writing - review & editing.                                                                                                                                                                                                                                              |
| 600                      | Cheng Cheng: Investigation. Weiyang Li: Investigation. Feng Xu: Investigation.                                                                                                                                                                                                                                               |
| 601                      | Yuan Cui: Investigation. Lei Zhu: Conceptualization, Project administration, Super-                                                                                                                                                                                                                                          |
| 602                      | vision, Writing - review & editing. Hong Shen: Conceptualization, Funding acquisi-                                                                                                                                                                                                                                           |
| 603                      | tion, Resources, Writing – review & editing.                                                                                                                                                                                                                                                                                 |
| 604                      |                                                                                                                                                                                                                                                                                                                              |
| 605                      | Declaration of competing interest                                                                                                                                                                                                                                                                                            |
| 606                      | The authors have declared no conflict of interest.                                                                                                                                                                                                                                                                           |
| 607                      | Funding                                                                                                                                                                                                                                                                                                                      |
| 608                      | This work was supported by Postgraduate & Practice Innovation Program of                                                                                                                                                                                                                                                     |
| 609                      | Jiangsu Province (KYCX23_2134).                                                                                                                                                                                                                                                                                              |
| 610                      | Acknowledgement                                                                                                                                                                                                                                                                                                              |
| 611                      | We greatly appreciate Shanghai BIOPROFILE Biotechnology Co., Ltd. (Shanghai,                                                                                                                                                                                                                                                 |
| 612                      | China) for UHPLC-MS/MS analysis.                                                                                                                                                                                                                                                                                             |
| 613                      |                                                                                                                                                                                                                                                                                                                              |
| 614                      | References                                                                                                                                                                                                                                                                                                                   |
| 615                      |                                                                                                                                                                                                                                                                                                                              |
| 616<br>617<br>618<br>619 | Anjum, J., Mitra, S., Das, R., Alam, R., Mojumder, A., Emran, T.B., Islam, F., Rauf, A., Hossain, M.J., Aljohani, A.S.M., Abdulmonem, W.A., Alsharif, K.F., Alzahrani, K.J., Khan, H., 2022. A renewed concept on the MAPK signaling pathway in cancers: Polyphenols as a choice of therapeutics. Pharmacol Res 184, 106398. |
| 620<br>621<br>622        | Baidoun, F., Elshiwy, K., Elkeraie, Y., Merjaneh, Z., Khoudari, G., Sarmini, M.T., Gad, M., Al-Husseini, M., Saad, A., 2021. Colorectal Cancer Epidemiology: Recent Trends and Impact on Outcomes. Curr Drug Targets 22(9), 998-1009.                                                                                        |
| 623<br>624<br>625        | Bocchetti, M., Ferraro, M.G., Ricciardiello, F., Ottaiano, A., Luce, A., Cossu, A.M., Scrima, M., Leung, W.Y., Abate, M., Stiuso, P., Caraglia, M., Zappavigna, S., Yau, T.O., 2021. The Role of microRNAs in Development of Colitis-Associated Colorectal Cancer. Int J Mol Sci 22(8).                                      |
| 626<br>627               | Bulavin, D.V., Fornace, A.J., Jr., 2004. p38 MAP kinase's emerging role as a tumor suppressor. Adv Cancer Res 92, 95-118.                                                                                                                                                                                                    |
| 628                      | Choi, J.B., Kim, J.H., Lee, H., Pak, J.N., Shim, B.S., Kim, S.H., 2018. Reactive Oxygen Species and p53                                                                                                                                                                                                                      |

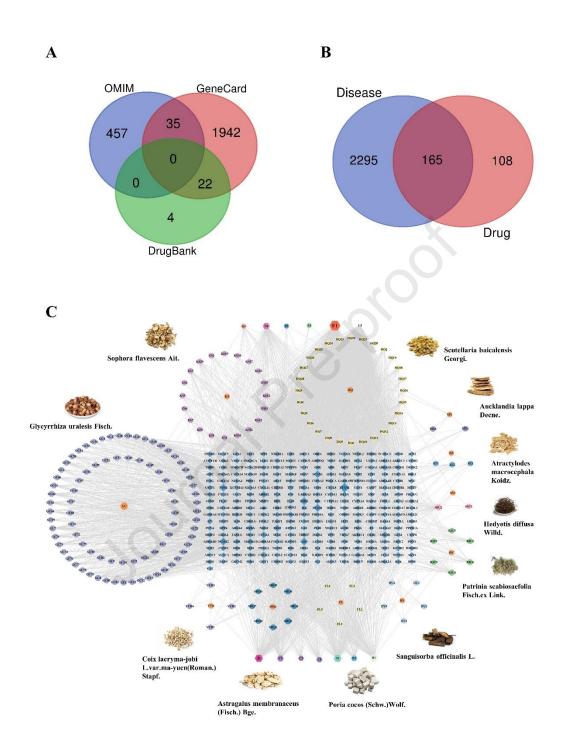
- 629 Mediated Activation of p38 and Caspases is Critically Involved in Kaempferol Induced Apoptosis
- in Colorectal Cancer Cells. J Agric Food Chem 66(38), 9960-9967.
- Duan, Z.L., Wang, Y.J., Lu, Z.H., Tian, L., Xia, Z.Q., Wang, K.L., Chen, T., Wang, R., Feng, Z.Y., Shi,
- 632 G.P., Xu, X.T., Bu, F., Ding, Y., Jiang, F., Zhou, J.Y., Wang, Q., Chen, Y.G., 2023. Wumei Wan
- 633 attenuates angiogenesis and inflammation by modulating RAGE signaling pathway in IBD:
- Network pharmacology analysis and experimental evidence. Phytomedicine 111, 154658.
- Duff, D., Long, A., 2017. Roles for RACK1 in cancer cell migration and invasion. Cell Signal 35, 250-
- 636 255.
- Hammouda, M.B., Ford, A.E., Liu, Y., Zhang, J.Y., 2020. The JNK Signaling Pathway in Inflammatory
- 638 Skin Disorders and Cancer. Cells 9(4).
- Han, X., Zhang, X., Wang, Q., Wang, L., Yu, S., 2020. Antitumor potential of Hedyotis diffusa Willd:
- A systematic review of bioactive constituents and underlying molecular mechanisms. Biomed
- 641 Pharmacother 130, 110735.
- Hsiao, S.W., Yen, H.H., Chen, Y.Y., 2022. Chemoprevention of Colitis-Associated Dysplasia or
- 643 Cancer in Inflammatory Bowel Disease. Gut Liver 16(6), 840-848.
- 644 Hu, J., Huang, H., Che, Y., Ding, C., Zhang, L., Wang, Y., Hao, H., Shen, H., Cao, L., 2021. Qingchang
- Huashi Formula attenuates DSS-induced colitis in mice by restoring gut microbiota-metabolism
- homeostasis and goblet cell function. J Ethnopharmacol 266, 113394.
- 647 Hu, J., Tong, Y., Shen, Z., Li, Y., Cheng, C., Au, R., Xu, F., Liu, Y., Zhu, L., Shen, H., 2022. Gegen Qinlian
- decoction ameliorates murine colitis by inhibiting the expansion of Enterobacteriaceae through
- activating PPAR-y signaling. Biomed Pharmacother 154, 113571.
- Huang, S.Z., Liu, W.Y., Huang, Y., Shen, A.L., Liu, L.Y., Peng, J., 2019. Patrinia scabiosaefolia Inhibits
- Growth of 5-FU-Resistant Colorectal Carcinoma Cells via Induction of Apoptosis and Suppression
- of AKT Pathway. Chin J Integr Med 25(2), 116-121.
- 653 Ji, Y., Liu, Y., Hu, J., Cheng, C., Xing, J., Zhu, L., Shen, H., 2021. Exploring the Molecular Mechanism
- 654 of Astragali Radix-Curcumae Rhizoma against Gastric Intraepithelial Neoplasia by Network
- Pharmacology and Molecular Docking. Evid Based Complement Alternat Med 2021, 8578615.
- 656 Jiang, Y., Fan, L., 2020. Evaluation of anticancer activities of Poria cocos ethanol extract in breast
- 657 cancer: In vivo and in vitro, identification and mechanism. J Ethnopharmacol 257, 112851.
- Jo, G., Kwon, M.J., Kim, J.N., Kim, B.J., 2020. Radix Sophorae Flavescentis induces apoptosis through
- by Caspase, MAPK Activation and ROS Signaling Pathways in 5637 Human Bladder Cancer Cells.
- 660 Int J Med Sci 17(11), 1474-1481.
- 661 Kong, N., Chen, X., Feng, J., Duan, T., Liu, S., Sun, X., Chen, P., Pan, T., Yan, L., Jin, T., Xiang, Y., Gao,
- 662 Q., Wen, C., Ma, W., Liu, W., Zhang, M., Yang, Z., Wang, W., Zhang, R., Chen, B., Xie, T., Sui, X., Tao,
- 663 W., 2021. Baicalin induces ferroptosis in bladder cancer cells by downregulating FTH1. Acta Pharm
- 664 Sin B 11(12), 4045-4054.
- 665 Lee, E.J., Kim, J.H., Kim, T.I., Kim, Y.J., Pak, M.E., Jeon, C.H., Park, Y.J., Li, W., Kim, Y.S., Choi, J.G.,
- 666 Chung, H.S., 2021. Sanguisorbae Radix Suppresses Colorectal Tumor Growth Through PD-1/PD-
- 667 L1 Blockade and Synergistic Effect With Pembrolizumab in a Humanized PD-L1-Expressing
- 668 Colorectal Cancer Mouse Model. Front Immunol 12, 737076.
- 669 Li, W., Zhao, T., Wu, D., Li, J., Wang, M., Sun, Y., Hou, S., 2022. Colorectal Cancer in Ulcerative Colitis:
- 670 Mechanisms, Surveillance and Chemoprevention. Curr Oncol 29(9), 6091-6114.
- Li, X., Wei, S., Niu, S., Ma, X., Li, H., Jing, M., Zhao, Y., 2022. Network pharmacology prediction and
- 672 molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu

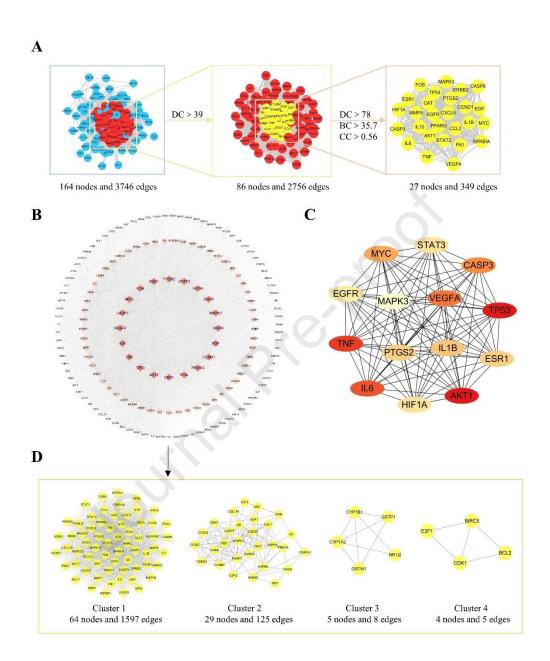
- Decoction against sepsis. Comput Biol Med 144, 105389.
- 674 Liang, L., Sun, W., Wei, X., Wang, L., Ruan, H., Zhang, J., Li, S., Zhao, B., Li, M., Cai, Z., Huang, J.,
- 2023. Oxymatrine suppresses colorectal cancer progression by inhibiting NLRP3 inflammasome
- activation through mitophagy induction in vitro and in vivo. Phytother Res.
- 677 Liu, J., Liu, J., Tong, X., Peng, W., Wei, S., Sun, T., Wang, Y., Zhang, B., Li, W., 2021a. Network
- Pharmacology Prediction and Molecular Docking-Based Strategy to Discover the Potential
- Pharmacological Mechanism of Huai Hua San Against Ulcerative Colitis. Drug Des Devel Ther 15,
- 680 3255-3276.
- 681 Liu, J., Nile, S.H., Xu, G., Wang, Y., Kai, G., 2021b. Systematic exploration of Astragalus
- 682 membranaceus and Panax ginseng as immune regulators: Insights from the comparative
- biological and computational analysis. Phytomedicine 86, 153077.
- Loftus, L.V., Amend, S.R., Pienta, K.J., 2022. Interplay between Cell Death and Cell Proliferation
- Reveals New Strategies for Cancer Therapy. Int J Mol Sci 23(9).
- Nibret, E., Krstin, S., Wink, M., 2021. In vitro anti-proliferative activity of selected nutraceutical
- compounds in human cancer cell lines. BMC Res Notes 14(1), 18.
- Pan, X., Shen, Q., Zhang, C., Zhang, X., Li, Y., Chang, Z., Pang, B., 2023. Coicis Semen for the
- treatment of malignant tumors of the female reproductive system: A review of traditional Chinese
- medicinal uses, phytochemistry, pharmacokinetics, and pharmacodynamics. Front Pharmacol 14,
- 691 1129874.
- Park, H.B., Baek, K.H., 2022. E3 ligases and deubiquitinating enzymes regulating the MAPK
- signaling pathway in cancers. Biochim Biophys Acta Rev Cancer 1877(3), 188736.
- Peluso, I., Yarla, N.S., Ambra, R., Pastore, G., Perry, G., 2019. MAPK signalling pathway in cancers:
- Olive products as cancer preventive and therapeutic agents. Semin Cancer Biol 56, 185-195.
- Peña-Blanco, A., García-Sáez, A.J., 2018. Bax, Bak and beyond mitochondrial performance in
- 697 apoptosis. Febs j 285(3), 416-431.
- 698 Ren, Y., Lv, C., Zhang, J., Zhang, B., Yue, B., Luo, X., Yu, Z., Wang, H., Ren, J., Wang, Z., Dou, W.,
- 699 2021. Alantolactone exhibits antiproliferative and apoptosis-promoting properties in colon cancer
- model via activation of the MAPK-JNK/c-Jun signaling pathway. Mol Cell Biochem 476(12), 4387-
- 701 4403.
- Seeliger, D., de Groot, B.L., 2010. Ligand docking and binding site analysis with PyMOL and
- Autodock/Vina. J Comput Aided Mol Des 24(5), 417-422.
- 704 Shah, S.C., Itzkowitz, S.H., 2022. Colorectal Cancer in Inflammatory Bowel Disease: Mechanisms
- and Management. Gastroenterology 162(3), 715-730.e713.
- 706 Shang, L., Wang, Y., Li, J., Zhou, F., Xiao, K., Liu, Y., Zhang, M., Wang, S., Yang, S., 2023. Mechanism
- of Sijunzi Decoction in the treatment of colorectal cancer based on network pharmacology and
- 708 experimental validation. J Ethnopharmacol 302(Pt A), 115876.
- 709 Shen, H., Zhu, L., Hu, J. A traditional Chinese medicine compound composition for the treatment
- of colitis-associated colorectal cancer and its preparation method: CN202211655092.8 [P]. 2023-
- 711 06-23.
- Song, S., Zhou, J., Li, Y., Liu, J., Li, J., Shu, P., 2022. Network pharmacology and experimental
- 713 verification based research into the effect and mechanism of Aucklandiae Radix-Amomi Fructus
- against gastric cancer. Sci Rep 12(1), 9401.
- Su, H.F., Shaker, S., Kuang, Y., Zhang, M., Ye, M., Qiao, X., 2021. Phytochemistry and cardiovascular
- protective effects of Huang-Qi (Astragali Radix). Med Res Rev 41(4), 1999-2038.

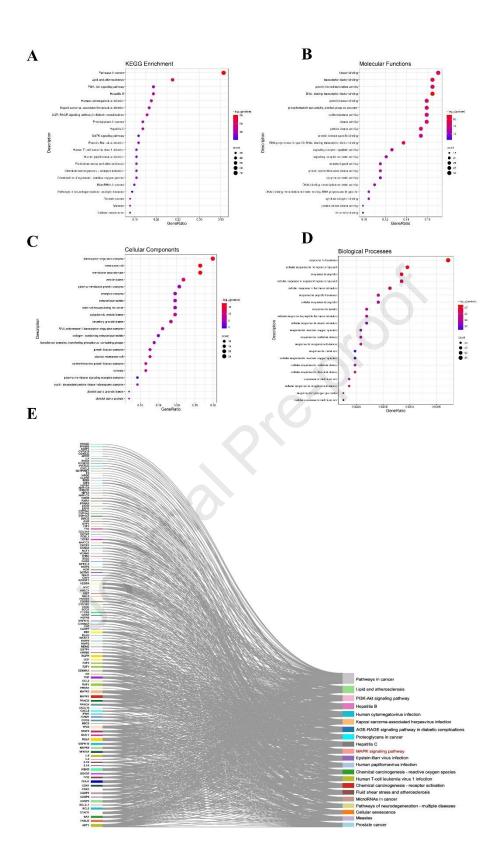
- Sun, L., Zhao, M., Li, J., Liu, J., Wang, M., Zhao, C., 2023. Exploration of the anti-liver injury active
- 718 components of Shaoyao Gancao decoction by network pharmacology and experiments in vivo.
- 719 Phytomedicine 112, 154717.
- Vaghari-Tabari, M., Ferns, G.A., Qujeq, D., Andevari, A.N., Sabahi, Z., Moein, S., 2021. Signaling,
- 721 metabolism, and cancer: An important relationship for therapeutic intervention. J Cell Physiol
- 722 236(8), 5512-5532.
- Wagner, E.F., Nebreda, A.R., 2009. Signal integration by JNK and p38 MAPK pathways in cancer
- development. Nat Rev Cancer 9(8), 537-549.
- 725 Wang, K., Chen, Q., Shao, Y., Yin, S., Liu, C., Liu, Y., Wang, R., Wang, T., Qiu, Y., Yu, H., 2021.
- 726 Anticancer activities of TCM and their active components against tumor metastasis. Biomed
- 727 Pharmacother 133, 111044.
- 728 Wang, Y., Yuan, Y., Wang, W., He, Y., Zhong, H., Zhou, X., Chen, Y., Cai, X.J., Liu, L.Q., 2022.
- 729 Mechanisms underlying the therapeutic effects of Qingfeiyin in treating acute lung injury based
- on GEO datasets, network pharmacology and molecular docking. Comput Biol Med 145, 105454.
- Wang, Z.Y., Li, M.Z., Li, W.J., Ouyang, J.F., Gou, X.J., Huang, Y., 2023. Mechanism of action of
- 732 Daqinjiao decoction in treating cerebral small vessel disease explored using network
- 733 pharmacology and molecular docking technology. Phytomedicine 108, 154538.
- 734 Yang, B., Yang, N., Chen, Y., Zhu, M., Lian, Y., Xiong, Z., Wang, B., Feng, L., Jia, X., 2020. An
- 735 Integrated Strategy for Effective-Component Discovery of Astragali Radix in the Treatment of Lung
- 736 Cancer. Front Pharmacol 11, 580978.
- Ye, M., Luo, G., Ye, D., She, M., Sun, N., Lu, Y.J., Zheng, J., 2021. Network pharmacology, molecular
- 738 docking integrated surface plasmon resonance technology reveals the mechanism of Toujie
- 739 Quwen Granules against coronavirus disease 2019 pneumonia. Phytomedicine 85, 153401.
- Yoo, H.S., Won, S.B., Kwon, Y.H., 2022. Luteolin Induces Apoptosis and Autophagy in HCT116
- 741 Colon Cancer Cells via p53-Dependent Pathway. Nutr Cancer 74(2), 677-686.
- You, W., Di, A., Zhang, L., Zhao, G., 2022. Effects of wogonin on the growth and metastasis of colon
- cancer through the Hippo signaling pathway. Bioengineered 13(2), 2586-2597.
- 744 Yu, R., Yu, B.X., Chen, J.F., Lv, X.Y., Yan, Z.J., Cheng, Y., Ma, Q., 2016. Anti-tumor effects of
- Atractylenolide I on bladder cancer cells. J Exp Clin Cancer Res 35, 40.
- Yuan, L., Zhang, K., Zhou, M.M., Wasan, H.S., Tao, F.F., Yan, Q.Y., Feng, G., Tang, Y.S., Shen, M.H.,
- Ma, S.L., Ruan, S.M., 2019. Jiedu Sangen Decoction Reverses Epithelial-to-mesenchymal Transition
- and Inhibits Invasion and Metastasis of Colon Cancer via AKT/GSK-3β Signaling Pathway. J Cancer
- 749 10(25), 6439-6456.
- 750 Zanotelli, M.R., Zhang, J., Reinhart-King, C.A., 2021. Mechanoresponsive metabolism in cancer cell
- migration and metastasis. Cell Metab 33(7), 1307-1321.
- 752 Zhang, W., Li, M., Du, W., Yang, W., Li, G., Zhang, C., Liang, X., Chen, H., 2019. Tissue Distribution
- 753 and Anti-Lung Cancer Effect of 10-Hydroxycamptothecin Combined with Platycodonis Radix and
- 754 Glycyrrhizae Radix ET Rhizoma. Molecules 24(11).
- 755 Zhang, Y., Liang, Y., He, C., 2017. Anticancer activities and mechanisms of heat-clearing and
- detoxicating traditional Chinese herbal medicine. Chin Med 12, 20.

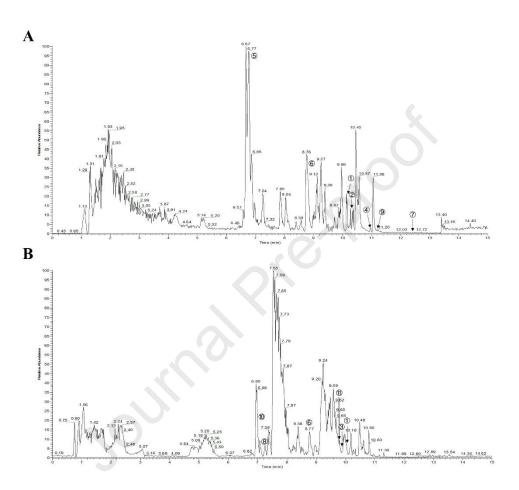
# 758 Figure legend

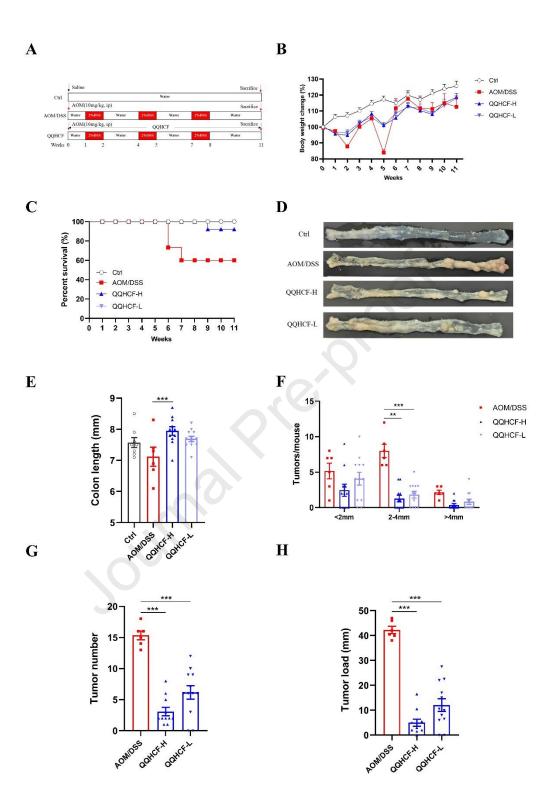

757

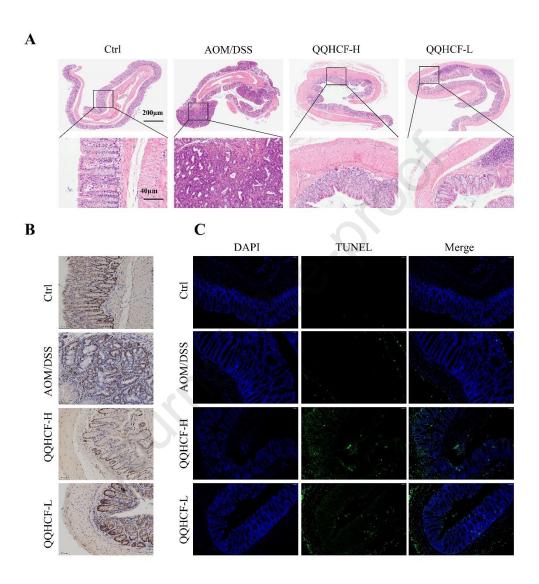

759 **Fig.1.** Flowchart of this study.

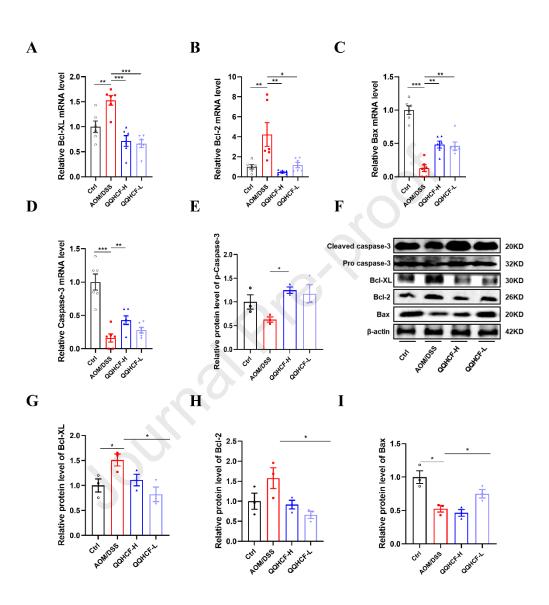

- 760 Fig.2. Targets related to CAC and active ingredient-targets of QOHCF. (A) The Venn
- diagram of CAC therapeutic targets. (B) Venn diagram of CAC targets and QQHCF
- targets. (C) Herb-ingredient-targets gene network. The surrounding circles represent
- the different herbs and active compounds of QQHCF. The hexagons above and below
- represent the shared ingredients between the herbs. The blue quadrangles in the middle
- 765 represent the targets.
- Fig.3. The PPI network of QQHCF's targets for the treatment of CAC. (A) Topology
- screening process for PPI networks. The 27 core targets were obtained by screening
- 768 165 common targets through DC, BC, and CC. (B) The core and non-core target net-
- works. (C) Top 14 core targets. Darker color represents higher degree value. (D) PPI
- network based on cluster analysis using the MCODE plug-in.
- Fig.4. GO and KEGG enrichment analysis of 165 common targets. (A) KEGG pathway
- analysis. (B) Molecular function category. (C) Cellular component category. (D) Bio-
- logical process category. (E) Sankey diagram for KEGG signaling pathway analysis.
- 774 The rectangular nodes on the left represent treatment targets. The rectangular nodes on
- the right represent KEGG pathways. The lines represent the properties of targets and
- 776 pathways.
- 777 Fig.5. Identification of active compounds in QQHCF using UHPLC-MS/MS. (A)
- 778 QQHCF in ESI<sup>+</sup> mode. **(B)** QQHCF in ESI<sup>-</sup> mode.
- 779 Fig.6. QQHCF alleviates AOM/DSS induced CAC in mice. (A) Schematic overview
- of the AOM/DSS model of colitis-associated colorectal cancer (CAC). (B) Percent body
- 781 weight change. (C) Percent survival rate. (D) Representative colon images of CAC
- mice. (E) Colon lengths. (F) Tumor size distribution. (G) Number of tumors in colon
- 783 tissue. (H) Tumor load in colon tissue. All data are shown in mean  $\pm$  SEM (\*p<0.05,
- 784 \*\*p<0.01, \*\*\*p<0.001).
- 785 Fig.7. QQHCF alleviates pathological changes of AOM/DSS-induced CAC mice. (A)
- 786 Representative H&E staining of colon tissue. (B) Immunochemistry staining for Ki67
- 787 in colon tissue. **(C)** Immunofluorescence staining for TUNEL in colon tissue.
- 788 Fig.8. Effects of QQHCF on the colon tissue of the AOM/DSS-induced CAC mice by

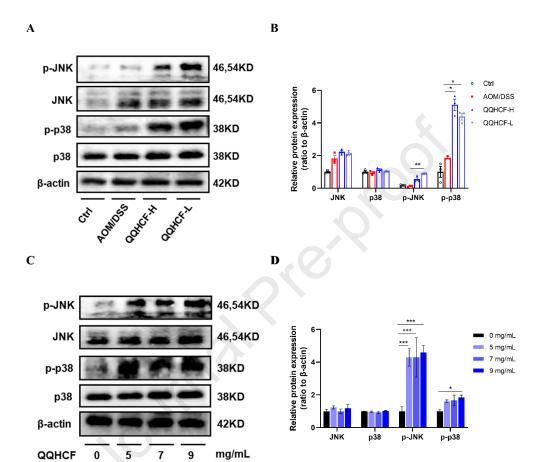

determination of pro-apoptosis (Bax and Caspase-3), and anti-apoptosis markers (Bcl-789 XL and Bcl-2). (A-D) mRNA quantification of apoptosis markers using real-time qRT-790 PCR. (E-I) Determination of protein production of apoptosis markers using western 791 blot analysis. All data are shown as mean  $\pm$  SEM (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001). 792 Fig.9. QQHCF treatment activated the JNK/p38 MAPK pathway in vivo and vitro. (A-793 **B)** The total (JNK and p38) and phosphorylated (p-JNK and p-p38) JNK/p38 MAPK 794 pathway proteins in colon tissue were detected by western blotting. (C-D) The total 795 796 (JNK and p38) and phosphorylated (p-JNK and p-p38) JNK/p38 MAPK pathway proteins in HT-29 cells were detected by western blotting. All data are shown as mean  $\pm$ 797 SEM (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001). 798 Fig.10. QQHCF inhibits the cell viability and migration in HCT116 and HT-29 cells, 799 and also induces apoptosis in these cells. (A-B) CCK8 assays of HCT116 and HT-29 800 cells after treatment with QQHCF. (C) mRNA quantification of apoptosis markers us-801 ing real-time qRT-PCR. (D) Determination of protein production of apoptosis markers 802 using western blot analysis. (E) Wound healing assays of HT-29 cells after treatment 803 804 with QQHCF (magnification=40x). (F) Quantitative histogram of the results of wound healing assays. All data are shown as mean  $\pm$  SEM (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001). 805 Fig.11. QQHCF repressed the invasion and induces apoptosis in CRC cells. (A) 806 Transwell invasion assay of HT-29 cells after treatment with QQHCF (magnifica-807 tion=100x). (B) Calcein/PI assay of HT-29 cells after treatment with QQHCF (magni-808 fication=400x). All data are shown as mean  $\pm$  SEM (\*p<0.05, \*\*p<0.01, \*\*\*p<0.001). 809 Fig.12. Molecular docking results of main chemical components and JNK. (A) Quer-810 cetin-JNK. (B) Kaempterol-JNK. (C) luteolin-JNK. (D) wogonin-JNK. 811 812 Fig.13. Schematic diagram of QQHCF ameliorating colitis-associated colorectal cancer by activating the JNK/p38 MAPK pathway (By Figdraw). 813 814 Abbreviations: QQHCF, Qi-Qin-Hu-Chang Formula; CAC, colitis associated colorec-815 tal cancer; TCMSP, Traditional Chinese Medicine Systems Pharmacology; GO, gene 816

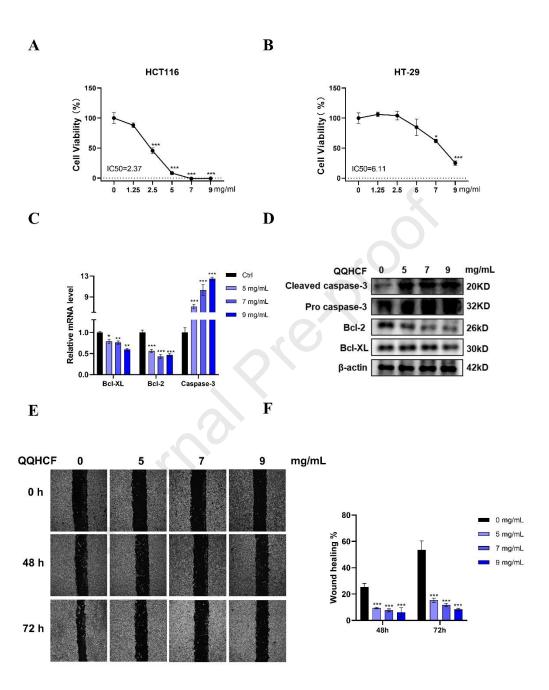

| Chinese Medicine; OB, oral bioavailability; DL, drug-likeness; OMIM, Online Mendelian Inheritance in Man; BC, betweenness centrality; CC, closeness centrality; DC, degree; CAN, acetonitrile; AOM, azoxymethane; DSS, dextran sulfate sodium; TIC, total ion chromatograms; EIC, extracted ion chromatography; AR, Astragali Radix; AMR, Atractylodis Macrocephalae Rhizoma; CS, Coicis Semen; PC, Porix Cocos; SFR,                                                                                      | ontology; KEGG, kyoto encyclopedia of gene and genomes; PPI, protein-protein inter-   |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|
| delian Inheritance in Man; BC, betweenness centrality; CC, closeness centrality; DC, degree; CAN, acetonitrile; AOM, azoxymethane; DSS, dextran sulfate sodium; TIC, total ion chromatograms; EIC, extracted ion chromatography; AR, Astragali Radix; AMR, Atractylodis Macrocephalae Rhizoma; CS, Coicis Semen; PC, Porix Cocos; SFR, Sophorae Flavescentis Radix; SR, Scutellariae Radix; HP, Herba Patriniae; SH, Spreading Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr- | action; CRC, colorectal cancer; IBD, inflammatory bowel disease; TCM, Traditional     |
| degree; CAN, acetonitrile; AOM, azoxymethane; DSS, dextran sulfate sodium; TIC, total ion chromatograms; EIC, extracted ion chromatography; AR, Astragali Radix; AMR, Atractylodis Macrocephalae Rhizoma; CS, Coicis Semen; PC, Porix Cocos; SFR, Sophorae Flavescentis Radix; SR, Scutellariae Radix; HP, Herba Patriniae; SH, Spreading Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr-                                                                                      | Chinese Medicine; OB, oral bioavailability; DL, drug-likeness; OMIM, Online Men-      |
| total ion chromatograms; EIC, extracted ion chromatography; AR, Astragali Radix; AMR, Atractylodis Macrocephalae Rhizoma; CS, Coicis Semen; PC, Porix Cocos; SFR, Sophorae Flavescentis Radix; SR, Scutellariae Radix; HP, Herba Patriniae; SH, Spreading Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr-                                                                                                                                                                      | delian Inheritance in Man; BC, betweenness centrality; CC, closeness centrality; DC,  |
| AMR, Atractylodis Macrocephalae Rhizoma; CS, Coicis Semen; PC, Porix Cocos; SFR, Sophorae Flavescentis Radix; SR, Scutellariae Radix; HP, Herba Patriniae; SH, Spreading Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr-                                                                                                                                                                                                                                                       | degree; CAN, acetonitrile; AOM, azoxymethane; DSS, dextran sulfate sodium; TIC,       |
| Sophorae Flavescentis Radix; SR, Scutellariae Radix; HP, Herba Patriniae; SH, Spreading Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr-                                                                                                                                                                                                                                                                                                                                        | total ion chromatograms; EIC, extracted ion chromatography; AR, Astragali Radix;      |
| ing Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr-                                                                                                                                                                                                                                                                                                                                                                                                                            | AMR, Atractylodis Macrocephalae Rhizoma; CS, Coicis Semen; PC, Porix Cocos; SFR,      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sophorae Flavescentis Radix; SR, Scutellariae Radix; HP, Herba Patriniae; SH, Spread- |
| rhizae Radix et Rhizoma.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ing Hedyotis Herb; ARs, Aucklandiae Radix; SRs, Sanguisorbae Radix; GC, Glycyr-       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rhizae Radix et Rhizoma.                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       |

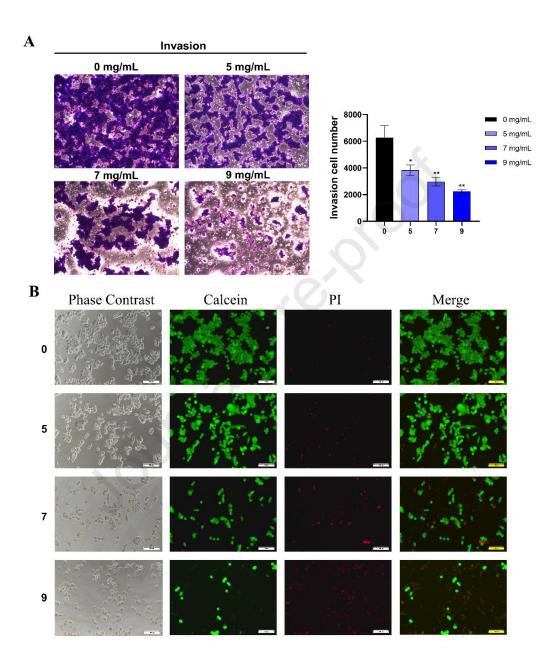


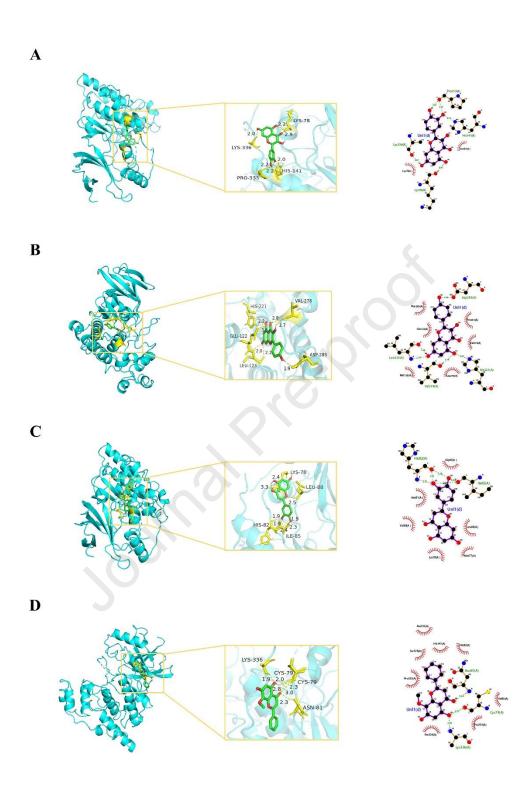



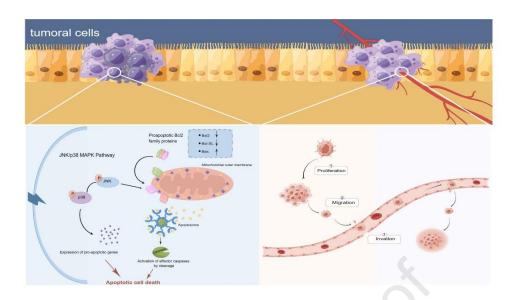














Taure

## Detailed information of herbs in QQHC.

| Chinese name    | Latin name                                   | Part(s) used       | Amount(g) |
|-----------------|----------------------------------------------|--------------------|-----------|
| Huangqi         | Astragalus mongholicus Bunge                 | roots              | 15        |
| Baizhu          | Atractylodes macrocephala Koidz.             | roots              | 10        |
| Yiyiren         | Coix lacryma-jobi L.                         | seed kernels       | 30        |
| Fuling          | Poria cocos (Schw.)Wolf                      | sclerotium         | 15        |
| Kushen          | Sophora flavescens Aiton                     | roots              | 10        |
| Huangqin        | Scutellaria baicalensis Georgi               | roots              | 10        |
| Baijiangcao     | Patrinia scabiosifolia Link                  | roots and rhizomes | 15        |
| Baihuasheshecao | Scleromitrion diffusum (Willd.) R.J.Wang     | whole grass        | 30        |
| Muxiang         | Dolomiaea costus (Falc.) Kasana & A.K.Pandey | roots              | 6         |
| Diyu            | Sanguisorba officinalis L.                   | roots              | 10        |
| Gancao          | Glycyrrhiza glabra L.                        | roots and rhizomes | 6         |

Table 2 Information of 14 core targets.

| No. | UniProt ID | Gene symbol | Protein name                                       | Degree |
|-----|------------|-------------|----------------------------------------------------|--------|
| 1   | P31749     | AKT1        | RAC-alpha serine/threonine-protein kinase          | 134    |
| 2   | P04637     | TP53        | Cellular tumor antigen p53                         | 127    |
| 3   | P01375     | TNF         | Tumor necrosis factor                              | 117    |
| 4   | P05231     | IL6         | Interleukin-6                                      | 115    |
| 5   | P15692     | VEGF        | Vascular endothelial growth factor A               | 112    |
| 6   | P42574     | CASP3       | Caspase-3                                          | 110    |
| 7   | P01106     | MYC         | Myc proto-oncogene protein                         | 107    |
| 8   | P01584     | IL1B        | Interleukin-1 beta                                 | 104    |
| 9   | P35354     | PTGS2       | Prostaglandin G/H synthase 2                       | 103    |
| 10  | P03372     | ESR1        | Estrogen receptor                                  | 103    |
| 11  | P40763     | STAT3       | Signal transducer and activator of transcription 3 | 101    |
| 12  | Q16665     | HIF1A       | Hypoxia-inducible factor 1-alpha                   | 101    |
| 13  | P00533     | EGFR        | Epidermal growth factor receptor                   | 100    |
| 14  | Q16644     | MAPK3       | MAP kinase-activated protein kinase 3              | 99     |

Table 3
KEGG enrichment results.

| ID       | Term                                                 | Count | <i>P</i> -Value |
|----------|------------------------------------------------------|-------|-----------------|
| hsa05200 | Pathways in cancer                                   | 72    | 6.05187E-82     |
| hsa05417 | Lipid and atherosclerosis                            | 48    | 1.74647E-64     |
| hsa05161 | Hepatitis B                                          | 39    | 1.37049E-53     |
| hsa04151 | PI3K-Akt signaling pathway                           | 39    | 1.80275E-39     |
| hsa05163 | Human cytomegalovirus infection                      | 38    | 8.41732E-46     |
| hsa05167 | Kaposi sarcoma-associated herpesvirus infection      | 37    | 1.09519E-46     |
| hsa04933 | AGE-RAGE signaling pathway in diabetic complications | 36    | 9.02987E-57     |
| hsa05160 | Hepatitis C                                          | 34    | 6.18453E-45     |
| hsa05205 | Proteoglycans in cancer                              | 34    | 1.14407E-40     |
| hsa05169 | Epstein-Barr virus infection                         | 32    | 1.33155E-37     |
| hsa04010 | MAPK signaling pathway                               | 32    | 3.4209E-32      |
| hsa05418 | Fluid shear stress and atherosclerosis               | 31    | 2.05355E-41     |
| hsa05166 | Human T-cell leukemia virus 1 infection              | 31    | 1.19656E-34     |
| hsa05165 | Human papillomavirus infection                       | 31    | 3.75572E-29     |
| hsa05207 | Chemical carcinogenesis - receptor activation        | 31    | 2.68429E-35     |
| hsa05208 | Chemical carcinogenesis - receptor activation        | 31    | 1.38374E-34     |
| hsa05206 | MicroRNAs in cancer                                  | 30    | 1.19043E-28     |
| hsa05022 | Pathways of neurodegeneration - multiple diseases    | 29    | 5.45384E-22     |
| hsa05162 | Measles                                              | 28    | 4.43686E-36     |

| 1.       | Journal Pr          | re-proof |             |
|----------|---------------------|----------|-------------|
| Nsau3213 | i iustate cancei    | 20       | J.JU241L-41 |
| hsa04218 | Cellular senescence | 28       | 1.46216E-34 |

Table 4 Chemical characterization of bioactive compounds in QQHC.

| NO                   | Name                   | Formula                                        | Class                    | RT(min)  | Intensity   |
|----------------------|------------------------|------------------------------------------------|--------------------------|----------|-------------|
| 1                    | Formononetin+-         | C <sub>16</sub> H <sub>12</sub> O <sub>4</sub> | Isoflavonoids            | 10.14647 | 30104956928 |
| 2                    | Atractylenolide III+   | $C_{15}H_{20}O_3$                              | Sesquiterpene lactones   | 10.21618 | 1702038016  |
| (3)                  | 9-Oxononanoic Acid-    | $C_9H_{16}O_3$                                 | Medium-chain fatty acids | 9.901733 | 449050272   |
| <u>4</u><br><u>5</u> | Poricoic Acid B+       | $C_{30}H_{44}O_5$                              | Triterpenoids            | 10.9162  | 334360512   |
| (5)                  | Ammothamnine+          | $C_{15}H_{24}N_2O_2$                           | Matrine alkaloids        | 6.765983 | 3.45563E+11 |
| 6                    | Baicalin+/-            | $C_{21}H_{18}O_{11}$                           | Flavonoid O-glycosides   | 8.773483 | 18628802560 |
| 7                    | Oleanolic Acid+        | $C_{30}H_{48}O_3$                              | Triterpenoids            | 12.40875 | 79542048    |
| (7)<br>(8)<br>(9)    | Asperuloside-          | $C_{15}H_{18}O_2$                              | Glycosyl compounds       | 7.353567 | 1056839552  |
| 9                    | Dehydrocostus Lactone+ | $C_{15}H_{20}O_2$                              | Sesquiterpene lactones   | 11.12615 | 5934508032  |
| 10                   | Gallic Acid-           | $C_7H_6O_5$                                    | Hydroxybenzoic acid      | 7.031367 | 2894515712  |
|                      |                        |                                                | derivatives              |          |             |
| 11)                  | Glycyrrhizin-          | $C_{42}H_{62}O_{16}$                           | Triterpene glycosides    | 9.718384 | 5782703104  |

Table 5
Details of targets and compounds for molecular docking.

| Target | Target (PDB ID) | Target Structure | Compound   | Affinity (kcal/mol) |
|--------|-----------------|------------------|------------|---------------------|
| JNK    | 3ELJ            |                  | quercetin  | -5.04               |
|        |                 | S. S. NOW        | Kaempterol | -4.94               |
|        |                 |                  | luteolin   | -5.63               |
|        |                 |                  | wogonin    | -5.81               |
| P38    | 1R3C            | 85 En            | quercetin  | -4.63               |
|        |                 |                  | Kaempterol | -5.02               |
|        |                 |                  | luteolin   | -5.62               |
|        |                 |                  | wogonin    | -6.72               |

Table 6
Primer sequence.

| Gene            | Primer | Sequence (5'-3')       |
|-----------------|--------|------------------------|
| Mouse-β-actin   | F      | CTCATGAAGATCCTGACCGAG  |
|                 | R      | AGTCTAGAGCAACATAGCACAG |
| Human-GAPDH     | F      | GAGAAGGCTGGGGCTCATTT   |
|                 | R      | AGTGATGGCATGGACTGTGG   |
| Human-Bcl-2     | F      | GGGTGAACTGGGGGAGGATT   |
|                 | R      | CAGCCCAGACTCACATCACCAA |
| Human-Bcl-XL    | F      | TCCCCATGGCAGCAGTAAAG   |
|                 | R      | AGGTAAGTGGCCATCCAAGC   |
| Human-Caspase-3 | F      | GTCGATGCAGCAAACCTCAG   |
|                 | R      | CCACGGCAGGCCTGAATAAT   |

|                 |    | rnal Pre-proof         |
|-----------------|----|------------------------|
| Niouse-dei-2    | 1. | UAUTICUUTUUUTCATUTU    |
|                 | R  | CTTCAGAGACAGCCAGGAGAAA |
| Mouse-Bcl-XL    | F  | ATTCCCATGGCAGCAGTGAA   |
|                 | R  | CCGCCAAAGGAGAAAAAGGC   |
| Mouse-Bax       | F  | GATCCAAGACCAGGGTGGC    |
|                 | R  | CTTCCAGATGGTGAGCGAGG   |
| Mouse-Caspase-3 | F  | GTCATCTCGCTCTGGTACGG   |
| -               | R  | CACACACAAAGCTGCTCC     |

John Alexandra de la companya della companya della companya de la companya della companya della

## **Highlights**

- We firstly conducted bioinformatic methods and animal experiments to illuminate the anti-CAC mechanism of QQHCF.
- QQHCF can ameliorate AOM/DSS-induced CAC mice.
- QQHCF can promote apoptosis in HT29 and HCT116 cells.
- QQHCF can inhibit the migration and invasion of HT29 cells.
- QQHCF can activate the JNK/p38 MAPK signaling pathway in vitro and vivo.
- Our study provides a novel approach and mechanism for the treatment of CAC.

## **Conflict of Interest**

Declarations of interest: none

All authors declare that they have no conflicts of interest.